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Dual Pathways of Heme Protein Model Compound 
Reactions with Carbon Monoxide 

Sir: 

The reactions of carbon monoxide with heme proteins1 or 
their five-coordinate model compounds2"4 are usually written 
as the simple association-dissociation process shown below 
•(direct association mechanism). 

base 

- F e - + CO 

base 

- F e - (D 

C 
III 
O 

We have recently reported4 definitive kinetic evidence for this 
pathway for compound 1 (see Table I) in water at pH >7. We 
now report evidence for a different base-elimination mecha­
nism (eq 2-4) in reactions of heme-base compounds with 
carbon monoxide. 

When compound 1 in aqueous CTAB is titrated with acid 
its Soret band shows an isosbestic change from that of five-
coordinate heme (416 nm at pH 9) to that of four-coordinate 
heme (408 nm, broad, at pH 2)5 and indicates an apparent pK3 

of 3.5.6 Over the range pH 2-9 the visible spectrum of the 

Compound 

1 
2 

Mesoheme dimethyl ester 

R 

H 
CH3 

(' 'obsd)0 '* 
1. mol" 

1.0 X 
1.3 X 
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1 S" 1 
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P*a< 
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a The observed second-order rate constant for heme-carbon mon­
oxide reaction was measured by the flash photolysis method as a 
pseudo-first-order reaction in varying concentrations of excess car­
bon monoxide. 6 Reactions were observed at pH 7.3 in water con­
taining 2% cetyltrimethylammonium bromide (CTAB) and about 
10-4 M sodium dithionite. cpKa = pH at which the proximal base is 
half coordinated to iron(II) and the other half protonated. 
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corresponding carbon monoxide complex, 1-CO, is unchanged. 
This means that at pH <2.5, the proximal imidazole in 1 re­
mains complexed with iron only if carbon monoxide is also 
complexed.5 It also implies that four-coordinate heme, Ic, 
produced in acidic media must complex carbon monoxide 
before the imidazole can coordinate (base-elimination mech­
anism). 

H 

la lb Ic 

The kinetic data for 1 strengthen this implication. At a 
carbon monoxide concentration of 2 X 10 - 5 M the rate con­
stant for combination with carbon monoxide (/'0bsd) increases 
from 1 X 1071. mol-1 s"1 at pH 7 to 3.5 X 108 1. mol"1 s~' at 
pH 2.5.4 Since the rate constant obtained at pH 2.5 is identical 
with that obtained for mesoheme dimethyl ester, the reaction 
of 1 at pH 2.5 with carbon monoxide presumably proceeds via 
a reaction of Ic with carbon monoxide (/'0bsd = ^s), yielding, 
as the final product, Ia-CO, and not Ic-CO. 
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pH 2.5, hv Ic6 Ic1 (H+) * 8 (CO) 
Ia-CO — la ^ lb — Ic ^ Ic-CO 

* -6 k-i k-s 

ki *io 
Ic-CO ^ Ib-CO ^ Ia-CO 

A-9 (H+) k-io 

At pH 7.3 the dominant reaction is direct association of carbon 
monoxide with la,4 

hi/ +CO/ tn 
Ia-CO -~ la — Ia-CO 

k-n 

Following the flash photolysis of Ia-CO at pH 3 the observed 
first-order return to Ia-CO is found to be first order in CO 
concentration up to about 8 X 1O-6M CO. Above this CO 
concentration the rate is independent of CO and inversely 
proportional to hydrogen ion concentration (eq 12) over the 
range of pH 2-3. 

log(£0bsd)= 1.24 pH-0 .29 (12) 

This suggests that at low CO concentration the rate-limiting 
step is reaction 8, whereas at high CO concentration it changes 
to the closure steps 9 and 10 (i.e., /'0bsd = Kgk\o). 

The latter mechanism was confirmed by flash spectroscopy. 
At pH 2.5 and 3.8 X 1O-4 M carbon monoxide the Soret band 
of the intermediate formed about 100 /xs after a flash of 200 
lis duration8 was identical with that of mesoheme dimethyl 
ester-CO (403 nm). This spectrum changed, with an isosbestic 
point, to that of Ia-CO (409 nm)9 at a rate described by eq 
12.10 Alternatively, at pH 7.3 the intermediate formed im­
mediately following photolysis had a Soret maximum at 416 
nm9c clearly indicating a direct association mechanism at this 
pH. 

The change from the direct association mechanism to the 
base-elimination mechanism can be achieved at pH 7.3 by 
introducing steric hindrance into the proximal base as in 
compound 2.' ' This has the effect of shifting equilibrium 2 to 
the right (k-i/ki s 5 for 2 vs. 500 for 1), although the com­
pound 2 still appears predominantly five-coordinate according 
to its visible spectrum (Xmax 415, 550 nm). This makes 
k^kjjk-2 > k\ for 2 and changes the pathway to reactions 2-4. 
Again, the product of the reaction is 2a-C0, a hexacoordinate 
complex, as indicated by its spectrum.5b 

Because the hindered 2-methylimidazole forms only five-
coordinate complexes with hemes53,12,13 and shows no for­
mation of heme(base)2 complexes even at base concentrations 
as high as 2 M in water or toluene,12,1315,14 this mixture would 
seem to constitute a good myoglobin model. The association 
mechanism (1) would require that the reaction of this mixture 
with carbon monoxide become independent of the imidazole 
concentration above the concentration at which five-coordinate 
heme formation is >99% complete. This is because no hexa­
coordinate heme is formed which would interfere with the 
carbon monoxide association. However, we find that in a pH 
9 phosphate buffer containing CTAB this mixture reacts with 
carbon monoxide with second-order rate constants given by 
eq 13, where B = concentration of 2-methylimidazole. 

^ - K 1 5 8 + 1 „ 3 , 
' obsd 

Although the slope of the 1 //'0bsd vs. B plot shows a slight de­
crease at about 0.3 M base (K\j = 196 below 0.3 M and Ku 
= 145 from 0.3 to 3 M), there is no indication that the rate 
becomes independent of base concentration even at 1.6 M base 
where /'obsd = 

1.4 X 106 1. mol-1 s_1. Similar results are ob­
tained in toluene. We conclude that k\ would be less than 1.4 
X 106I. mol-1 s-115 for this mixture, that the reaction proceeds 
by the base-elimination pathway (eq 2-4) at all concentrations 
of 2-methylimidazole, and that K\i = k-i/ki. 

Even with the unhindered base 1-methylimidazole and 

mesoheme dimethyl ester in pH 7.3 buffer, the base-elimina­
tion mechanism obtains at the low concentration of base usu­
ally employed in studies of such model systems.2,3 The /'0bsd 
of such systems is faster than the /'0bsd of five-coordinate hemes 
even at 0.1 M base and the rate constant accurately follows eq 
13 up to 0.08 M 1-methylimidazole. "This is explicable only 
if the base-elimination mechanism is followed below this 
concentration. At 1O-4 M CO, 5 X 10 -6 M heme, and 1O-4 

M 1-methylimidazole and pH 8.5, flash spectroscopy revealed 
heme-CO and not heme-methylimidazole as the intermediate. 

Although we have not demonstrated the base-elimination 
mechanism for reactions of heme proteins, nor are we 
suggesting it for reactions of myoglobin or hemoglobin, the 
steric pull on the proximal imidazole which is presumably re­
sponsible for altering oxygen binding16 is similar to the steric 
effects which tend to remove the proximal imidazole and 
change the reaction mechanism. Such a change from the direct 
association to the base-elimination mechanism would have 
large effects on the observed on and off rates and could rep­
resent an additional mode of control for heme protein ligand 
binding and oxidation-reduction properties.18,20 
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